

WORKING FOR A HEALTHY FUTURE

Pesticide biomonitoring in residents Use of a mathematical model

Laura MacCalman, Karen Galea, Martie van Tongeren, John Cherrie, Anne Sleeuwenhoek

Centre for Human Exposure Science Institute of Occupational Medicine

Background

- Exposure to pesticides from agricultural use among bystanders and residents is difficult to estimate
- Regulatory risk assessment procedures in place
 - However, not comprehensively evaluated for pesticide exposure of residents living near agricultural land and bystanders
- To determine if regulatory risk assessment procedures in UK are appropriate

Challenges

- Difficult to plan as pesticide spraying depends on a lot of factors (eg presence of pests, weather)
- Methods for monitoring metabolites are not available for all pesticides
- Not feasible to collect 24 hrs samples for this duration

Methods

- Recruit farmers
 - Apply likely to apply certain pesticides (chlorpyrifos, cypermethrin, mancozeb)
 - Residents living <100 m from field
- Recruit residents living near farms
 - Provide urine samples
 - Weekly samples during a spraying season on an allocated day
 - Reactive samples if we receive sufficient notice from the farmer
 - Background samples during and outside spray season
- Use of physio-kinetic model by Rigas et al (2001)
 - To determine the most appropriate time of sample collection
 - To compare urinary metabolites with predicted internal exposure

Aims

- To determine the most appropriate sampling time
- To provide estimates of urinary levels of metabolites using ADI levels of exposure
- Study is currently still underway (no results of the measurements will be presented)

PK - Model

- Based on model used by Rigas et al. (2001)
- to describe the concentration of the metabolite in the absorption reservoir
- to describe the excretion

Required information

- Active Ingredient and metabolite specific info e.g.
 - Molecular weight, absorption rate, biological half-life
- Exposure specific information
 - Time of day of exposure, duration of exposure
- Person-specific information
 - Body weight

Optimal sampling time

- Chlorpyrifos, cypermethrin, mancozeb
- Run for each
 - Average male, female, 4 and 12 year old
 - 1 hour exposure at 8am, 12pm and 4pm
- Determine average concentration in urine at
 - Evening: 10pm (assuming last void between 4 and 9pm)
 - Morning: 7am (assuming last void at 10pm)

Optimal sampling time

- Ratio of concentration in urine for a morning void as compared to a night void
 - From 1.03 (half-life 13 hours)
 - to 2.61 (half-life 100 hours)
- Morning void always had higher concentration regardless of half-life, body weight, time of exposure

Estimate urinary level given exposure

- Test run using ADI
 - Chlormequat (0.7 mg/kg bw)
 - Captan (0.1 mg/kg bw)
 - Chlorpyrifos (0.003 mg/kg bw)
 - Penconazole (0.007 mg/kg bw)
- Assuming
 - exposure at 12pm
 - previous void 10pm
 - Sample taken at 7am
 - Average male

Estimate urinary level given exposure

- Chlormequat (0.7 mg/kg bw)
 - 0.09 mg/l
- Captan (0.1 mg/kg bw)
 - 0.004 mg/l
- Chlorpyrifos (0.003 mg/kg bw)
 - 0.00007 mg/l
- Penconazole (0.007 mg/kg bw)
 - Not determined as yet

Conclusions

- Using the model the optimal time to collect sample is the next morning
- Using the ADI to test, making some crude assumptions, the urine levels can be calculated.
- With more detailed exposure information this modelled concentration will be more reliable

Acknowledgements

Project funded by DEFRA

Thanks to all farmers and residents taking part

